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Problems on steady oscillations of elastic isotropic media received a thorough treatment 

in [l to 51 and other works. Some dynamic problems for nonhomogeneous and anisotropic 

media, were investigated in [6 to a]. Present paper is concerned with obtaining a class of 

general solutions of dynamic problems of the theory of elasticity for a transversely iso- 

tropic cylinder. 

1. Starting with the dynamic system of Lamd equations for a transversely isotropic 

homogeneous elastic medium. 

(1.1) 

a2uz z Cae ( aYJ2 
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(Cl1 - Cl2 = 2Cs,) 

we shall introduce cylindrical coordinates and make the following substitution of the 

sought functions 

This will result in an equivalent system 

(1.2) 
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the solution of which will be sought in the form 

w1 = R* (r) e i (kv+XCJ ,-pt IV2 = & @.) ,i :h’v~axd (?-P! 
(1.4) 

Wa=&(r)e i (kmias,) ,pt 

Here k and u are. real parameters, while p is a complex (Re p >r 0) one. Substitution 

of (1.4) into (1.1) yields the following system of ordinary differential equations 

(1.5) 

We shall seek its solution in the form 

R 1 (r) = A,J,+, (Br) 3- BIK k+l (fir) 

R 2 (r) = &I,_, (P) + B,K k_l @r) 

R, (r) = A,J, @r) i- R&k (@r) 
(1.6) 

where fv (,&) is a Bessel function with an imaginary argument and K, (pr) is a MacDonald 

function. The resulting system of homogeneous linear algebraic equations for Ai and Bi is 

klI@ - (cssa2 >- p2)1 (A, -f- A,) $_ 2iaB (cl3 i- cg3) A, = 0 
[cs@ - (rjju” + J12)1 (A, - A*) = 0 (1.7) 

l/z$ (cl:{ $ ~5%) (At + A,) -I- lcg5p2 - (c:aa2 i- p2)1 A, = 0 
IclIfip - (c5;u2 -I- $)I (BI 4- 13,) - 2ia8 (cl3 + c5&B3 = 0 

1~613~ - (c,,a 2 i- p2) I (B, - 8,) = 0 

(1.8) 
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Equating its determinant to zero, we obtain the equation for 

[e&2 - (c5,a2 + $)I (cllc5$* - Is, (c,,a2 + p2) i- es5 fc55a2 + $f - 

- (cl3 + csj)za21 pl” + (c&t2 + P2) (%,?%2 i- P2f> = 0 
0.9) 

the pairs of roots of which are given by 

p*2 z: Cs53a + P2 
c 66 

pBz,9=&- {css(GP2+ P") -!- Gl(C33U2 -i-p')- aZ(C1s+ Csd2 -t (1.10) 

,55 11 

+ 1/[Cas(Cssa2+ p2)t c11(c39u2 + P') - a2(C13+C55)212- /tCnC~~(C33a2+P~)(C65u2+P2~~ 

which, on substitution into (1.7) and (1.81, yield Ai and B . . a 

Particular solution of (1.3) can be written as 

where 

Solution of the most general form is obtained from (1.11) by summation in k and in- 

tegration with respect to u and p. 

2. As exampIes, we shall briefly consider solutions of some problems. 

Be shall assume the initial conditions to be homogeneous, and we shall also assume 

that the boundary functions admit the Laplace transformation in t, Fourier’s transforma- 

tion in x8 over the finite or infinite interval and expansion into a Fourier series in terms 

of the angular coordinate 4p. 

(a) Let us obtain the solution of the second fundamental problem for a hollow cylinder 

(a,< r.$ b) ofheight h, satisfying the homogeneous initial conditions, and 
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To obtain the solution of this problem, we shall ntilise the following 

Y+icO 

wj=&- S epf [,_eikQ 5 (Rp(r)+Rj~(~)'k'm')sin~2,]dp 
Y--i00 m=l 
y+im 

(2.2) 
m a3 

w,= i %z s I ,Pt 7 eikQ 
&I zii 

r--ioo k=--w m=O 

(R31 (rf f R,,(+kTm)) cos .!!f+ dp 1 
From (2.2) when r = a and r = b, together with the boundary conditions (2.1). and 

taking (1.12) and (1.13) into account, we obtain a set of six algebraic equations 

IR~I (r) 4 Rjz (r)l,,a (k* m, zz jj(” m, (p) [R+(r) -j- Rja(r)]k&r) = $j”’ m, (p) (i=1,2,3) 

which define the arbitrary constant% 

Pfetermination of C.B. and substitution of obtained values into (2.2) with (1.12) and 

(1.13) taken into acoou&/complatcs the general solution of oar problem. 

(6) Let us consider the solution of the first fundamental problem for a soIid cylfnder 

(rg a) of height h. Stresses u,, l;rQr ‘erg will be given in terms of Wi by the following 

formulas 

? rxs 
Let the stresses 

Y+*h 

7: rx*===f3(% =. f)=&- \ ep’ [,_eikQ $j f3(L*m)(p)c~~~q!dp 
Y-"-i03 ?W=O 

be given on the sarface of the cylinder. We shall use the formulas (2.2) and (2.3) with 

Rjn (r) = 0 (j = 1, 2, 3) to obtain the solation of oar problem, and 

(2.5) 
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to find three arbitrary constants ci . Insertion of obtained values into (2.2) completes the 

general solution of our problem. The same method can be used to solve other dynamic 

problems for a transversely isotropic, elastic cylinder. 

In case of steady oscillations, integrals of the type 

1 . . 

-s ki 
epr dp 

Y--im 

(2.6) 

should, wherever they occur, be replaced with the factor e i0 r . With p = 0, (2.1) yields 

the solutions of the corresponding static problems. 
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